香港六合彩-澳门六合彩-时时彩_百家乐平台_全讯网财富

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

正宗杨公风水24山分金| 西贡区| 百家乐平注7s88| 优博最新网址| 百家乐真人游戏娱乐场| 百家乐官网娱乐城有几家| 百家乐投注方向| 大发888娱乐场菲律宾| 百家乐官网打法分析| 星期8百家乐官网娱乐城| 真人百家乐博弈| 百家乐官网开户送彩网址| 362百家乐的玩法技巧和规则| 状元百家乐官网的玩法技巧和规则 | 网络百家乐官网怎样出千| 大发888 娱乐| 百家乐免费赌博软件| 百家乐官网是怎样的| 水果机破解器多少钱| 大玩家百家乐官网的玩法技巧和规则 | 百家乐官网长庄投注| 鸿宝娱乐| 大发888棋牌下载| 百家乐实战技术| 百家乐官网博彩通| 大发888下注| 百合百家乐的玩法技巧和规则 | 百家乐官网评级导航| LV百家乐赢钱LV| 澳门百家乐官网官网站| 乐清市| 大发888真人娱乐场网址官网| 百家乐视频造假| 百家乐官网桌子租| 百家乐官网电投软件| 百家乐官网最稳妥的打法| 湖口县| KK娱乐城| 金都娱乐城真人娱乐| 大发888游戏场下载| 做生意人的风水|